
PMM U.S.S.R.,vol.52,No.6,pp.809-8lG,l988 
Printed in Great Britain 

OoZl-8928/88 $~O.OO+O.OO 
01990 Pergamon Press plc 

ON THE USE OF EXTENSIONS OF THE REAL NUMBER FIELD TO 
SEEK COMPLETELY INTEGRABLE HAMILTONIAN SYSTEMS* 

A.A. BUROV 

Using methods based on extensions of the real number field, we indicate 

some classes of completely integrable Hamiltonian systems. 

1. Let R, be the extension of the field of real numbers whose elements are 

w=u+ou U,UER (i.1) 

where o is by definition a symbol satisfying the condition o2 = k, k E R. The operations of 

addition, subtraction and multiplication are defined naturally for w,,w,~R~: 

w1 t w2 = (++ %) + o (01 + 02) 

m,.u+ = (uluz + ku,u,) + o (u1+ + WI) 

Division is defined for all wl,wt such that w2 & R,,= (w:ua-ku==O, u, VE R), in which case 

WI _= ~(,ug- kuIu2 
+a 

WJ- 44 
Lot ox= - kuza uZ= - kvZP 

If k=--1 the set R, is simply the complex number field. If k=O the set R, is the 

object of investigation in screw calculus /l/. If k<O the set R,, consists of the single 

number w=O+oO while if k> 0 it is the set of divisors of zero in R,. We denote by u= 

Re,w, the real part, and by ov= 0 Irn,W the w-imaginary part of a number. 

Definition. A function f defined in a domain GER, is said to be differentiable at 

wg E G if for any 6>0 the limit 

'f (wd = lim f (wO + ‘) - f (wO) 
aw h-a h 

, hbjw:l;--kl<6} 

exists regardless of the way h tends to zero and independently of the parameter 6. 
The definition of differentiability is extended in the standard way to the case in which 

the function is defined in a domain ScRon= R, x . . ..x R,. In that case, if vi = UC + Ori, i = 
1, _, 1L, then differentiability of a function 

f (WI?. , 5,) = h (u,. . ., 42, VI, ., u,) + COY (IL,, ., un, “1. ., U”) 

requires satisfaction of the conditions 
dAlaui = Adams, ahlavi = kavldui (1.2) 

analogous to the Cauchy-Riemann conditions in the theory of functions of a complex variable. 
Consider the system of differential equations 

w'= G(w) WE R,' (1.3) 

If w=u+ov,c(w)=g(u,v)+oh(u,v), then system, (1.3) may be written 

u' = g (u. v). v' = h (u, v) u, v E R' (I .4) 

Proposition. Let the differentiable function 

F(w) = 'p (u, v) + 0 Q(U, v) (1.5) 

be a first integral of Eqs.(1.3). Then v (n, v).$ (u. v) are first integrals of Eqs.(1.4). 

Proof. Since F(w) is a first integral of Eqs.(1.3), 

g .G (w) = 2 g ( u, v)+k zh(u, v)~+o i!$h(.,v)+~g(u, v) 
k 

=O 

Using relations (1.2) and separating the real and o-imaginary parts, we obtain 

2 !3 (u, v) + 2 h (u, v) E 0, ‘2 h (u, v) + ‘2 g (u, v) G 0 
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Consequently, ~(u,v) and o(u>v! are first integrals of Eqs.(1.5). 

2. Consider the system of Hamilton equations 

Q‘ = afrlap, p’ = -aniaq P, Q E Ran 
with differentiable Hamiltonian If (P,Q). 

Proposition. If 

k i 0, Pi = pi + OP,+,,) Qi = qi t ~qi+,~v i = 1, . . ., !L 

If (P> (0 = ‘PO (P? 4) -i- ~~0 (P. 9) 

then system (2.1) may be written 

4i’ = @laPi, Pi’ = -a&aqi 

q;+,, = k-ladapicn3 pi+,, = - k-laq30iaqi+,,, i = 1, . . ., rI 

Proof. The function H(P,Q) is differentiable. Consequently, by (1.2), 

(2.1) 

(2.2) 

Substituting (2.3) into Eqs.(2.1) and separating real and w-imaginary parts, we obtain 

the desired assertion. 

Eqs.(2.2) form a system of Hamilton equations with 2n degrees of freedom, such that when 
k 7: 1 the symplectic structure turns out to be canonical. Moreover, if system (2.1) has a 

complete set of differentiable commuting first integrals J,- EI,J,, .( J_, and the functions 

+i z He,Ji,+i= Im,Ji are functionally independent then systems (2.2) has a complete set of 

commuting first integrals and is completely integrable. 

3. Consider the system of differentiable equations 

X' = X x aIllaX, X E Ra3 

with differentiable Hamiltonian a(X). Assume that 

x= y+ oM, y,hl= H3 

H(X) = w (y, &I) + mW (v. W 

(3.1) 

(3.2) 

Since the function (3.2) is differentiable, conditions (1.2) imply 

all/ax = aTlay + Oa+my = aria&f -+- 0aqday (3.3) 

Substituting (3.3) into Eqs.(3.1) and separating the real and o-imaginary parts, we 
obtain 

Y' --= Y x awanf -+- IzM x a$jay, M’ = M x a$/atf T y x agjav (3.4) 

When k= 0 Eqs.(3.4) form a system of Hamilton equations on the six-dimensional Lie 

algebra e (3) /2/. It is known that equations of this type describe the motion of various 

mechanical systems: a solid body with a fixed point in an axially symmetric force field, a 

solid body in an ideal fluid. Eqs.(3.4) have two trivial first integrals: J,- M.y,J2 = f-- MF. 

Restriction of the flow (3.4) to their non-singular common level J,,(p.l)= (J,= p,J,== I) 1s 

described by a system of Hamilton equations with two degrees of freedom. In general, one 

additional integral is insufficient for a system of type (3.4) to be integrable. In this case, 

when J$ =m Inl,ll such an integral indeed exists and it has the form p= Re,H. 

The idea of applying extensions of the real field to integrate the equations of motion 

of mechanical systems goes back to Appell and Lecornu (see /3/). The methods of screw analysis 

were used to integrate equations of type (3.4) in /4/, where the case of a quadratic function 

(3.2) is considered. 
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